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J. Phys. A: Math. Gen. 18 (1985) L261-L266. Printed in Great Britain 

LETTER TO THE EDITOR 

Four-dimensional boson field theory? 

George A Baker Jr and J D Johnson 
Theoretical Division, Los Alamos National Laboratory, University of California, Los 
Alamos, NM 87545, USA 

Received 15 October 1984 

Abstract. We introduce the method of 'phantom fields' and show how it can be used to 
construct non-trivial, scalar, self-interacting, Euclidean boson fields in four-dimensional 
space. These fields satisfy all the required axioms except perhaps rotational invariance 
and are based on the continuum limit of lattice cut-off fields. The resulting field theory 
may not be asymptotically free. 

A long standing problem has been the construction of a non-trivial, scalar, self- 
interacting boson field theory in four dimensions. In the context of the usual 
approaches, the existence of such a theory has been virtually excluded. Attention has 
centred on the g o :  44:4 theory because higher polynomial powers in the interaction 
are not renormalisable (Itzykson and Zuber 1980). In fact, Newman (1979) has proven 
under mild assumptions that such a field cannot exist if its degree (which corresponds 
formally to the degree of the polynomial in the Hamiltonian) exceeds 4. More recently 
both numerical (Baker and Kincaid 198 1 ) and theoretical ( Aisenman 198 1, 1982, 
Brydges et al 1982) evidence points strongly in the direction that the go: 44:4 theory 
itself is trivial, i.e., a generalised free field which has no scattering. As the : + 2  : theory 
is of course just the free field, the usual approach is pretty well exhausted. 

A way out of this dilemma has been discovered by Baker (1984b) in his study of 
limitations of critical index universality. We will call this discovery the 'method of 
phantom fields'. It bears a relation to the spirit of local effective Lagrangian theory 
(Symanzik 1982) and the theory of ultraviolet renormalons (Gross and Neveu 1974, 
Lautrup 1977, 't Hooft 1979). In the latter theory it is found (Parisi 1978, 1979, Berghre 
and David 1983) that they are proportional to the insertion of local irrelevant variables, 
as for example +6.  

The models we wish to study are special cases of the continuous-spin Ising model. 
We work in Euclidean space, because if we are successful in satisfying, for example, 
Nelson's axioms (Nelson 19731, we are assured by his reconstruction theorem that a 
Minkowski space theory satisfying the, by now standard, Wightman axioms can be 
constructed from the Euclidean space one. We begin with a lattice cut-off version 
(hyper-simple-cubic lattice for convenience only) of the field theory. It is described 
by the partition function 

t Work performed under the auspices of the US DOE. 
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where M is a formal normalisation constant, i ranges over a portion of the integer 
lattice Z4, the set (6)  is one half the set of nearest neighbours on the lattice, 
is a lower, semibounded, even monic polynomial of degree p and : 4“ : is the normal 
ordered product. As long as the lattice spacing a is greater than zero, the normal order 
product (Baker 1984a) is 

where C is the commutator [4-, 4’3 and is proportional to a - 2 .  Using equation (2) 
we can re-express equation ( 1 )  

where m is a different formal normalisation constant, P is again a polynomial of degree 
P, and 

ai = qf4(2/K)”’, A =  ~ ( 4 + & ’ m ; ) ,  

A, = ,iO(~/2)pa4-2p, ~ ( x )  = f, a J ~ ,  u p =  1. (4) 
J = I  

We impose the normalisation on the scale of ai 

1 =( l )=(af)= x2 exp[-Ax2 - ~,P(x’ ) ]  dx exp[ -Ax’ - x,P( x’)] dx 

Now we wish to study the special case where, in terms of orders of magnitude of a, 
all the parameters in (3), i.e., K, A, A,, aj, are of order unity. This prescription means, 
in terms of the field theory variables 4, that the coefficient of 4’” is going to be 
proportional to a”“-”. In other words the coefficient of 44 is of order unity, that of 
46 of order a’, c$* of order a4, etc. This means that the coefficients of 46, +*, . . . 
nominally vanish in the continuum limit, a + 0, and so we call them ‘phantom fields’. 
Nevertheless, the normal ordered product of each of these terms contributes a coefficient 
of order unity to the coefficient of 44. For example, a 2 :  46:= ~ ’ 4 ~ -  1 5 ~ ’ C 4 ~ + .  . .. 
Since Coca-’ we get a negative finite contribution to the coefficient of 44 in the 
continuum limit, which with a judicious choice of 9’ could lead to a model in the 
nominal continuum limit with the opposite sign of the leading (44) term from usual 
models. This model avoids Newman’s proof (Newman 1979) of non-existence because, 
in this definition, the polynomial remains of nominal degree 4. 

Briefly, we know rigorously (Baker 1984a) for models of this sort that, a > 0, for 
Dirichlet, periodic and free boundary conditions, the infinite volume (thermodynamic) 
limit exists for the free energy per unit volume and for the Schwinger functions 
(multipoint correlation functions). In addition, by using a general box size and 
arguments based on generalised Pad6 approximants (Baker 1984a), one can construct 
from the perturbation series in io, the free energy and the Schwinger functions in the 
infinite volume limit ( a  > 0). By means of standard theorems on the convergence of 
a sequence of uniformly continuous functions, we can show that the infinite volume 
limit is continuous in the parameters of ( 2 )  for all positive real 1,. In particular, the 
renormalised mass, m (second moment definition), is continuous and also the amplitude 
renormalisation constant. Further, as long as a > 0 ,  the perturbation series in io in 
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the infinite volume limit (Baker 1984a) is finite, term by term. The question of 
uniqueness of summability of this series is not yet rigorously resolved. By means of 
the FKG inequalities and superstable estimates Sokal (1981) has proven the cluster 
Property 

I ( ~ A a d - ( ~ A ) ( u B ) l ~  Clln xIyx, (6) 

where aA = nnEA a,, C and y are appropriate constants and 

This inequality suffices to insure independence of the boundary conditions and to 
imply exponential decay of the multipoint correlations at large distances when that 
decay is true of the two-point correlations. Finally, from the existence of the appropriate 
transfer matrix, reflection positivity through lattice symmetry planes holds. 

If we consider the limit io+ 03, then the single-site spin distribution function 
becomes a finite sum of Dirac delta functions. By an extension of the Peierls' argument 
(Griffiths 1972, Lebowitz and Gallavotti 1971) this model possesses a phase 
transition to a state with spontaneous magnetisation at sufficiently low temperature. 
Again general theorems on the limit of a converging sequence, through increasing box 
size, of continuous functions coupled with monotonicity in box size derived from 
Griffiths inequalities (Griffiths 1972) imply that an arbitrarily small limiting value of 
one over the susceptibility x (using the untruncated definition) can be constructed in 
the thermodynamic limit by an appropriate adjustment of K as a function of lattice 
spacing and box size. Sokal's inequality (Sokal 1982) between the susceptibility and 
the correlations length, plus continuity, forces the same result for the correlation length, 
6 (in units of the lattice spacing a) .  By known results for the free field model (1 = 0), 
the same results hold for it. By continuity and monotonicity arguments, these con- 
clusions suffice by usual methods (Baker 1984a) to prove mass and amplitude renor- 
malisability for all positive real io. 

The above discussion is enough for us to gain control of the two-point function in 
the continuum limit. We now turn to the multipoint functions. For specificity, we will 
select p = 3 (equation (4)) and so deal with a 46 theory. In this case we write out for 
convenience (3) as 

z = M-1 I-:. . . [ 7 dui exp( K c 1 c7ic7i+b -ic7~-g,,c7~-ioc7~ ) . (8) 
i ( 6 )  

From the first order in perturbation theory, with go, io taken as small and A determined 
by equation (51, we obtain for the renormalised four-point coupling constant, expressed 
in terms of magnetic quantities (Baker 1984a), 

+7424K2-36864K3+69632K4)]+O(g& i o i o ,  Xi), (9) 
where v is the specific hyper-volume per lattice site. For the hyper-simple-cubic lattice, 
v = a4 and 

The critical point, or continuum limit, is K =:, and P4($) is a finite positive constant. 



L264 Letter to the Editor 

If we choose 

g o <  -(15+2p4(;))io, (11 )  

then, to leading order in perturbation theory, g < O  for all O <  K S K,=' 8.  

General power counting arguments are the same for this theory as for d4 theory 
(Itzykson and Zuber 1980). The extra internal momentum integrations, which lead to 
ultraviolet divergences in the usual way are exactly compensated by the factors of a 2  
at each six-point vertex, and lead for p = 3, or larger, to a superficial degree of ultraviolet 
divergence of 4-  E where E is the number of external lines. This feature suggests 
that from the perturbation theoretic point of view no new primitive divergences occur 
for six or more external lines. Thus if we adjust our parameters to control the two- 
and four-point terms and insertions, by the usual theory (Itzykson and Zuber 1980) 
all will go well for the higher-order Schwinger functions. 

It is worth pointing out that the contribution to g from the Feynman diagram of 
figure 1 is proportional to 

(a2Xo)' / " a  ...I dkl  dk2dk3 . i r (k l ) . i r (k2) . rr (k , ) . r r (k-k l -k , -k , ) ,  (12) 
- = / a  

where 

Figure 1. A phantom field Feynman diagram. 

This term in the continuum limit is finite and independent of k. Elaboration of this 
result suggests that the perturbation series will be rotationally invariant term-by-term 
so the continuum theory may also be but we have not proven it. Further, it would 
appear that the theory is not asymptotically free. The asymptotic freedom could be 
destroyed by the phantom fields, i.e., non-renormalisable, field self-interactions with 
strengths which vanish in the continuum limit, just as was the case for critical exponent 
universality (Baker 1984b) in three dimensions. 

By the method of high-temperature series analysis, we have investigated, using the 
data of Baker and Kincaid (1981), the limit as io+ CO for p = 3 theories. In this class 
the limiting single-site spin distribution, equation (3), reduces to 

% S ( s  - S ) +  S(s+s)]s-'+( 1 - s -2)6(s ) ,  s z  1, (14) 

which has the moments (s2") = S2("-l). For 1 =S S S  J 2  the system obeys the Yang-Lee 
theorem (Lieb and Sokal 1981). For S >  J3 and K =0,  the value of g as defined by 
equation (9) is negative instead of positive as it is for 1 =S S < J3, By increasing S 
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further, g remains negative for all 0 6 K 6 K ,  in analogy to equation ( 11) which holds 
for very small io and io. 

Specifically, we have analysed the behaviour of g for S = 2.1 for the hyper-simple- 
cubic and hyper-body-centred-cubic lattices as well as a number of other cases. We 
have used the method of Pad6 analysis (Baker and Graves-Morris 1981), although 
such sophistication is not really necessary. We have first written g as a function of t2 
and then (Baker and Kincaid 1981) ('=O.lx/( 1 - x )  so as to perform the analysis in 
x where the continuum limit, or critical point, corresponds to x = 1. We analyse the 
series for x2g, which are ( S  = 2.1 ) 

- x ' ~ ( x ) u ~ / u  = 141 -56.4x-23.7876x2-3.5l3 72x3-2.034 7 9 9 1 ~ ~  

- 0.618 3 10 27x5 - 0.756 808 43x6 - 0.636 873 72x7 

- 0.482 039 44xs - 0.337 569 92x9 - 0.228 675 25xio+. . . HBCC 

= 141 - 5 6 . 4 ~ - 5 3 . 2 1 5 2 ~ ~ -  14.054 88x3-4.071 843 67x4 

+4.805 3991x5+2.367 7591~'-0.370990 80x7 

- 1.030 7781~~-0 .397 808 93x9-0.039 295 lox''+. . . HSC. (15) 

We estimate that g(l)--25.9*0.1 for HBCC, and --18.7*0.3 for the HSC lattice. 
The value of U is 0 . 5 ~ ~  for the HBCC and a4 for the HSC. 

We conclude, by these numerical results, (8), and continuity, that we can select 
go(io, a )  in such a way that for each fixed a > 0 we can define a monotonically 
decreasing function g( io ,  a )  which interpolates between g(0, a )  = 0, and the numerical 
case given above. This function can be chosen in such a way that there exists a 
non-trivial, finite limit g( io ,  0), 0 < io S CO. When combined with the previously men- 
tioned power counting argument and our control of the two-point function, we believe 
that these procedures lead to the construction of a non-trivial, self-interacting, scalar, 
Euclidean, boson field theory in four dimensions. 

We are pleased to acknowledge helpful discussions with Professor A S Wightman and 
J R Klauder. 
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